Facts to Know

A graph is an illustration of an equation. A graph is made up of two number lines that cross (more about this below). A graph shows the relationship of the terms in the equation. The graphs of some equations are straight lines. These are linear equations. The graphs of other equations can be curves or other shapes. These are called nonlinear equations. Can you tell the difference just by looking at an equation? Yes.

A linear equation contains one or two variables, each to the first power

$$
\text { Examples: } \quad y=3 b+5 \quad n=4 \quad t=\frac{1}{2} y-8
$$

On the other hand, if a variable in an equation is raised to a power other than 0 or 1 -and that includes negative numbers, too-its graph will be nonlinear.

$$
\begin{array}{ll}
\text { Examples: } 20=\boldsymbol{r}^{2} & r \text { is a variable raised to the second power. } \\
\boldsymbol{t}=\frac{\mathbf{3}}{\boldsymbol{x}}+\mathbf{9} & t=\frac{3}{x}+9 \text { is the same as } y=3 x^{-1}+9, \text { raising } x \text { to the }-1 \text { power. }
\end{array}
$$

Graphs are often used in engineering and other sciences to show a mathematical statement as a visual piece of information. A shape can be expressed as an equation or as a graph.

Number Lines on Graphs

A graph is made up of two number lines that intersect (cross) at right angles. One number line is horizontal. It is called the x-axis.

The numbers to the right of 0 are positive. The numbers to the left of 0 are negative.

How to

Facts to Know (cont.)

The vertical number line is called the y-axis.

The numbers above zero are positive. The numbers below zero are negative.
On a graph, the x-axis and y-axis cross at 0 . The zero is called the origin. All other points are counted from zero.

Points on a graph are often named by letters: A, B, C, D and so on. To find out what number a point stands for, count the number of lines from 0 . What does the A stand on the graph above?
A is on the x-axis, two places to the right of zero. So, point A is at 2 on the x-axis. Point A is $(2,0)$.

7 How to

Facts to Know (cont.)

Finding Coordinates for Points

Two numbers are needed to give the location of a point on a graph. The two numbers are the point's coordinates. Think of when you use the number scale and letter scale on the sides of a map. A town or landmark may be located at (A, 7), for instance. These are the place's coordinates.

In algebra, the coordinates are always written inside parentheses, like this:

- refers to a point on the x-axis
- tells how far to the right or left of 0 the point is located

- refers to a point on the y-axis
- tells how far above or below 0 the point is located

Find the coordinates for points A and B on the graph below.

For Finding Point A

Step 1: Find the x-coordinate. Start at 0 and count over right to the line point A is on. Point A is 2 lines to the right of 0 . So, point A is has an x-coordinate of 2.

Step 2: Find the y-coordinate. Start at 0 and count to the line point A is on. Point A is 4 lines above 0 . Point A has a y coordinate of 4 .

So, the coordinates for point A are $(2,4)$.

For Finding Point B

Step 1: Find the x-coordinate. Start at 0 and count over left to the line point B is on. Point B is 1 line to the left of 0 . So, point B has an x-coordinate of -1 .

Step 2: Find the y-coordinate. Start at 0 and count up to the line point B is on. Point B is 5 lines above 0 . Point B has a y-coordinate of 5 .

So, the coordinates for point B are $(-1,5)$.

7
Directions: Find the coordinates for the points on the graph.

Directions: Find the coordinates for the points on the graph.

