Facts to Know

Algebra is a branch of mathematics that uses numbers and letters that stand for numbers to solve problems. In algebra, if a number is unknown, any letter of the alphabet can be used to stand for that number. Letters are called variables because the values of the letters vary from one problem to another. In one problem, x may stand for -2 . In another problem, it may stand for 43 .

Writing Algebraic Expressions

An algebraic expression is a statement made up of numbers, variables, and signs of operation $(+,-, \div, x)$. The phrase "a number" indicates the use of the variable.

Statement in Words

a number increased by 6

7 decreased by a number
a number divided by 12

$$
\frac{x}{12}
$$

a number multiplied by 4

$$
4(n)
$$

the sum of 7 and a number, divided by 3
the sum of 4 times a number and 2

20 divided by the sum of 5 and a number

4 times a number minus 2 times the same number
two-fifths of a number

Algebraic Expression
 $$
x+6
$$

$$
7-y
$$

$$
\frac{7+y}{3}
$$

$$
4 x+2
$$

$$
\frac{20}{5+y}
$$

$$
4 x-2 x
$$

Combining Like Terms

Sometimes algebraic expressions can be shortened by combining like terms making them simpler to understand. An expression is made up of smaller parts called terms. A term can be made up of numbers, variables, or numbers and variables. In an expression, terms are separated by only plus and minus signs.

Examples: 15, $x, x y, 5 x y, \frac{4 x}{y}$

Facts to Know (cont.)

A numerical coefficient is any number in front of a variable in a term. If there is no number in front of a varible, the numerical coefficient is understood to be 1 .

$$
\begin{gathered}
\text { Examples: } \underset{\uparrow}{\mathbf{4} a, ~ 5 x, ~} \mathbf{~} \mathbf{x} x \\
\text { numerical coefficients }
\end{gathered}
$$

An exponent tells how many times a number has been multiplied by itself. Examples: $\mathbf{4}^{\mathbf{2}}, \mathbf{8} \boldsymbol{w}^{\mathbf{3}}, \mathbf{1 0} \boldsymbol{n}^{\mathbf{3}}$
Terms that have all of the same variables ($x y, 3 x y, 5 x y$, etc.) or variables with the same exponents $\left(4 a^{2}+a^{2}\right)$, are called like or similar terms. Like terms can be combined by combining the numerical coefficients.

$$
\begin{aligned}
& \text { Examples } \\
& 5 b+b \longrightarrow 5 b+1 b \longrightarrow(5+1) b \longrightarrow 6 b \\
& 9 a-2 a \longrightarrow(9-2) a \longrightarrow(5 n-2 n)+3 r \longrightarrow 3 n+3 r \\
& 5 n+3 r-2 n \longrightarrow(5-2) n+3 r \longrightarrow
\end{aligned}
$$

But an algebraic expression like $9 y^{2}+2 y$ cannot be combined because y^{2} and $2 y$ are not like terms. One has an exponent of 2 and the other has a coefficient of 2 .

Evaluating Algebraic Expressions

Remember that in algebra a variable can stand for any number. However, sometimes in an algebraic expression, you are given the value of the letter. Then you must replace the variables with the numbers they represent to solve for the value of the whole expression.

Example: Find the value of $\frac{a}{b}$, when $a=20$ and $b=4$.
Step 1: Replace a with its value, 20. $\frac{\mathbf{2 0}}{\mathbf{b}}$
Step 2: Replace b with its value. $\frac{\mathbf{2 0}}{\mathbf{4}}$
Step 3: Complete the division problem. $\frac{\mathbf{2 0}}{\mathbf{4}}=\mathbf{5}$

3 Practice
Directions: Write the algebraic expression. If there is one variable, use x. If there are two variables, use x and y.

1. fourteen divided by a number \qquad
2. seven times a number \qquad
3. 10 less than a number \qquad
4. 12 more than a number \qquad
5. one number added to another number \qquad
6. a number divided by 6 \qquad
7. 4 times a number plus 5 times the same number \qquad
8. 4 times a number plus 5 times another number \qquad
9. 7 more than one-third of a number \qquad
10. 25 divided by a number \qquad
11. the sum of 6 and a number divided by 10 \qquad
12. one-half the product of 8 and a number \qquad
13. the sum of 5 and a number divided by 7 \qquad
14. the sum of 4 and a number divided by 10 \qquad
15. 20 decreased by 4 times a number \qquad
16. the sum of 20 and a number divided by 5 \qquad
17. The length of the gym floor is 5 feet longer than its width. Using w for the width, write an expression for the length of the room. \qquad
18. Three carnival tickets cost c cents. What is the cost of one? \qquad
Directions: Change the algebraic expressions to statements in words.

Algebraic Expression

Statement in Words
19. $a+b$
20. $s-r$
21. $4 y$
22. $\frac{8}{y}$
23. $2 y-5$
24. $8+y$
25. $x y$
26. $22-t$
27. $t-22$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

